martes, 11 de agosto de 2015

6 excelentes alternativas gratuitas a Microsoft Visio

Como herramientas de impresión de ideas, los mapas mentales, conceptuales y diagramas de flujo destacan por su increíble eficiencia envuelta en la sencillez comunicacional de las formas que les componen. Sin embargo, la dependencia al software de pago como el ofrecido por Microsoft afecta dicha utilidad al punto de prescindir de su uso en ausencia de la aplicación.

Pues bien, para evitarlo hoy me permito compartir algunas de las mejores alternativas, no todas libres pero al menos sin costo, facilitadas en gran parte a la recopilación de MakeTechEasier.
Dia
Un aplicación Open Source con un diseño muy intuitivo, iconos grandes, inserción de imágenes y cuadrículas guía en el campo de dibujo. Junto a su formato especial de archivos .dia permite exportar los resultados a los formatos más populares de imágenes y diagramas, incluyendo por supuesto los .vdx de Visio. Funciona en Windows, GNU/Linux y Mac OS X.

LucidChart
Una alternativa Online caracterizada por sus opciones de arrastrar y soltar todo tipo de objetos, trabajo colaborativo y un buscador integrado que analiza las bases de datos de Icon Finder y Google Images para disponer de cualquier imagen en la red al instante. El registro es gratuito aunque las funcionalidades extra requieren al menos de cuentas de email .edu.
Diagramly
También Online, drag and drop, con vista previa de la página completa, menús desplegables al estilo Visio -incluso el color es parecido- y un destacable sistema de organización de elementos por categorías. No tiene siquiera pantalla de inicio o de registro, basta con entrar a la página para ya estar en el campo de dibujo. Los resultados pueden guardarse como XML, PNG, JPG y SVG.
Pencil Project
Para diseñar los algoritmos y primeros esquemas de interfaces de aplicaciones (GUI) tanto móviles como para PC, contando para ello con decenas de plantillas predeterminadas según el proyecto. Viene como extensión para Firefox y aplicaciones de escritorio para los OS populares.
Cmap Tools
Brinda la posibilidad de realizar mapas conceptuales apenas arrastrando las formas obteniendo simultáneamente las flechas de unión y campos de texto. Se encuentra limitado por el uso correcto de conectores y conceptos, aunque la gestión de contenidos es impecable. Por defecto sólo funciona en Windows.
OpenOffice y LibreOffice Draw
La herramienta de dibujo de las suites ofimáticas libres dispone de una buena cantidad de recursos para realizar diagramas de manera sencilla, además de que su diseño limpio y ligero permite sacar beneficio de todas sus funciones desde el primer uso. Exporta a formatos XML, SWF, PDF e imagen. Me atrevería a decir que la mejor alternativa a Microsoft Visio, especialmente por la cantidad de ayuda en línea para exprimirle aún más y la compatibilidad con el resto de la suite.

Arquitectura RISC vs CISC

Hoy en día, los programas cada vez más grandes y complejos demandan mayor velocidad en el procesamiento de información, lo que implica la búsqueda de microprocesadores más rápidos y eficientes.

Los avances y progresos en la tecnología de semiconductores, han reducido las diferencias en las velocidades de procesamiento de los microprocesadores con las velocidades de las memorias, lo que ha repercutido en nuevas tecnologías en el desarrollo de microprocesadores. Hay quienes consideran que en breve los microprocesadores RISC (reduced instruction set computer) sustituirán a los CISC (complex instruction set computer), pero existe el hecho que los microprocesadores CISC tienen un mercado de software muy difundido, aunque tampoco tendrán ya que establecer nuevas familias en comparación con el desarrollo de nuevos proyectos con tecnología RISC.

La arquitectura RISC plantea en su filosofía de diseño una relación muy estrecha entre los compiladores y la misma arquitectura como se verá más adelante.

INTRODUCCIÓN:
Veamos primero cual es el significado de los términos CISC y RISC:

CISC (complex instruction set computer) Computadoras con un conjunto de instrucciones complejo. 
RISC (reduced instruction set computer) Computadoras con un conjunto de instrucciones reducido. 

Los atributos complejo y reducido describen las diferencias entre los dos modelos de arquitectura para microprocesadores solo de forma superficial. Se requiere de muchas otras características esenciales para definir los RISC y los CISC típicos. Aun más, existen diversos procesadores que no se pueden asignar con facilidad a ninguna categoría determinada.

Así, los términos complejo y reducido, expresan muy bien una importante característica definitiva, siempre que no se tomen solo como referencia las instrucciones, sino que se considere también la complejidad del hardware del procesador.

Con tecnologías de semiconductores comparables e igual frecuencia de reloj, un procesador RISC típico tiene una capacidad de procesamiento de dos a cuatro veces mayor que la de un CISC, pero su estructura de hardware es tan simple, que se puede realizar en una fracción de la superficie ocupada por el circuito integrado de un procesador CISC.

Esto hace suponer que RISC reemplazará al CISC, pero la respuesta a esta cuestión no es tan simple ya que:

Para aplicar una determinada arquitectura de microprocesador son decisivas las condiciones de realización técnica y sobre todo la rentabilidad, incluyendo los costos de software. 

Existían y existen razones de compatibilidad para desarrollar y utilizar procesadores de estructura compleja así como un extenso conjunto de instrucciones. 

La meta principal es incrementar el rendimiento del procesador, ya sea optimizando alguno existente o se desee crear uno nuevo. Para esto se deben considerar tres áreas principales a cubrir en el diseño del procesador y estas son:
  • La arquitectura. 
  • La tecnología de proceso. 
  • El encapsulado. 
La tecnología de proceso, se refiere a los materiales y técnicas utilizadas en la fabricación del circuito integrado, el encapsulado se refiere a cómo se integra un procesador con lo que lo rodea en un sistema funcional, que de alguna manera determina la velocidad total del sistema.

Aunque la tecnología de proceso y de encapsulado son vitales en la elaboración de procesadores más rápidos, es la arquitectura del procesador lo que hace la diferencia entre el rendimiento de una CPU (Control Process Unit) y otra. Y es en la evaluación de las arquítecturas RISC y CISC donde centraremos nuestra atención.

Dependiendo de cómo el procesador almacena los operandos de las instrucciones de la CPU, existen tres tipos de juegos de instrucciones:
  • Juego de instrucciones para arquitecturas basadas en pilas. 
  • Juego de instrucciones para arquitecturas basadas en acumulador. 
  • Juego de instrucciones para arquitecturas basadas en registros. 
Las arquítecturas RISC y CISC son ejemplos de CPU con un conjunto de instrucciones para arquítecturas basadas en registros.

ARQUITECTURAS CISC:
La microprogramación es una característica importante y esencial de casi todas las arquítecturas CISC.

Como por ejemplo:

Intel 8086, 8088, 80286, 80386, 80486.
Motorola 68000, 68010, 68020, 68030, 6840. 

La microprogramación significa que cada instrucción de máquina es interpretada por un microprograma localizado en una memoria en el circuito integrado del procesador.

En la década de los sesentas la micropramación, por sus características, era la técnica más apropiada para las tecnologías de memorias existentes en esa época y permitía desarrollar también procesadores con compatibilidad ascendente. En consecuencia, los procesadores se dotaron de poderosos conjuntos de instrucciones.

Las instrucciones compuestas son decodificadas internamente y ejecutadas con una serie de microinstrucciones almacenadas en una ROM interna. Para esto se requieren de varios ciclos de reloj (al menos uno por microinstrucción).

ARQUITECTURAS RISC:
Buscando aumentar la velocidad del procesamiento se descubrió en base a experimentos que, con una determinada arquitectura de base, la ejecución de programas compilados directamente con microinstrucciones y residentes en memoria externa al circuito integrado resultaban ser mas eficientes, gracias a que el tiempo de acceso de las memorias se fue decrementando conforme se mejoraba su tecnología de encapsulado.

Debido a que se tiene un conjunto de instrucciones simplificado, éstas se pueden implantar por hardware directamente en la CPU, lo cual elimina el microcódigo y la necesidad de decodificar instrucciones complejas.

En investigaciones hechas a mediados de la década de los setentas, con respecto a la frecuencia de utilización de una instrucción en un CISC y al tiempo para su ejecución, se observó lo siguiente:

- Alrededor del 20% de las instrucciones ocupa el 80% del tiempo total de ejecución de un programa.

- Existen secuencias de instrucciones simples que obtienen el mismo resultado que secuencias complejas predeterminadas, pero requieren tiempos de ejecución más cortos.

Las características esenciales de una arquitectura RISC pueden resumirse como sigue:

Estos microprocesadores siguen tomando como base el esquema moderno de Von Neumann. 

Las instrucciones, aunque con otras características, siguen divididas en tres grupos: 

a) Transferencia. 
b) Operaciones. 
c) Control de flujo. 

Reducción del conjunto de instrucciones a instrucciones básicas simples, con la que pueden implantarse todas las operaciones complejas. 
Arquitectura del tipo load-store (carga y almacena). Las únicas instrucciones que tienen acceso a la memoria son 'load' y 'store'; registro a registro, con un menor número de acceso a memoria. 
Casi todas las instrucciones pueden ejecutarse dentro de un ciclo de reloj. Con un control implantado por hardware (con un diseño del tipo load-store), casi todas las instrucciones se pueden ejecutar cada ciclo de reloj, base importante para la reorganización de la ejecución de instrucciones por medio de un compilador. 
Pipeline (ejecución simultánea de varias instrucciones). Posibilidad de reducir el número de ciclos de máquina necesarios para la ejecución de la instrucción, ya que esta técnica permite que una instrucción puede empezar a ejecutarse antes de que haya terminado la anterior. 

El hecho de que la estructura simple de un procesador RISC conduzca a una notable reducción de la superficie del circuito integrado, se aprovecha con frecuencia para ubicar en el mismo, funciones adicionales: 
Unidad para el procesamiento aritmético de punto flotante. 
Unidad de administración de memoria. 
Funciones de control de memoria cache. 
Implantación de un conjunto de registros múltiples. 

La relativa sencillez de la arquitectura de los procesadores RISC conduce a ciclos de diseño más cortos cuando se desarrollan nuevas versiones, lo que posibilita siempre la aplicación de las más recientes tecnologías de semiconductores. Por ello, los procesadores RISC no solo tienden a ofrecer una capacidad de procesamiento del sistema de 2 a 4 veces mayor, sino que los saltos de capacidad que se producen de generación en generación son mucho mayores que en los CISC.

Por otra parte, es necesario considerar también que:

La disponibilidad de memorias grandes, baratas y con tiempos de acceso menores de 60 ns en tecnologías CMOS. 
Módulos SRAM (Memoria de acceso aleatorio estática) para memorias cache con tiempos de acceso menores a los 15 ns. 
Tecnologías de encapsulado que permiten realizar más de 120 terminales. 

Esto ha hecho cambiar, en la segunda mitad de la década de los ochentas, esencialmente las condiciones técnicas para arquítecturas RISC.

La siguiente tabla esquematiza algunas de las principales características de las arquitecturas RISC Y CISC.

PRINCIPIOS DE DISEÑO DE LAS MAQUINAS RISC
Resulta un tanto ingenuo querer abarcar completamente los principios de diseño de las máquinas RISC, sin embargo, se intentará presentar de una manera general la filosofía básica de diseño de estas maquinas, teniendo en cuenta que dicha filosofía puede presentar variantes. Es muy importante conocer estos principios básicos, pues de éstos se desprenden algunas características importantes de los sistemas basados en microprocesadores RISC.

En el diseño de una máquina RISC se tienen cinco pasos: 
Analizar las aplicaciones para encontrar las operaciones clave. 
Diseñar un bus de datos que sea óptimo para las operaciones clave. 
Diseñar instrucciones que realicen las operaciones clave utilizando el bus de datos. 
Agregar nuevas instrucciones sólo si no hacen más lenta a la máquina. 
Repetir este proceso para otros recursos. 

El primer punto se refiere a que el diseñador deberá encontrar qué es lo que hacen en realidad los programas que se pretenden ejecutar. Ya sea que los programas a ejecutar sean del tipo algorítmicos tradicionales, o estén dirigidos a robótica o al diseño asistido por computadora.

La parte medular de cualquier sistema es la que contiene los registros, el ALU y los 'buses' que los conectan. Se debe optimar este circuito para el lenguaje o aplicación en cuestión. El tiempo requerido, (denominado tiempo del ciclo del bus de datos) para extraer los operandos de sus registros, mover los datos a través del ALU y almacenar el resultado de nuevo en un registro, deberá hacerse en el tiempo mas corto posible.

El siguiente punto a cubrir es diseñar instrucciones de máquina que hagan un buen uso del bus de datos. Por lo general se necesitan solo unas cuantas instrucciones y modos de direccionamiento; sólo se deben colocar instrucciones adicionales si serán usadas con frecuencia y no reducen el desempeño de las más importantes.

Siempre que aparezca una nueva y atractiva característica, deberá analizarse y ver la forma en que se afecta al ciclo de bus. Si se incrementa el tiempo del ciclo, probablemente no vale la pena tenerla.

Por último, el proceso anterior debe repetirse para otros recursos dentro del sistema, tales como memoria cache, administración de memoria, coprocesadores de punto flotante, etcétera.

Una vez planteadas las características principales de la arquitectura RISC así como la filosofía de su diseño, podríamos extender el análisis y estudio de cada una de las características importantes de las arquítecturas RISC y las implicaciones que estas tienen.

PAPEL DE LOS COMPILADORES EN UN SISTEMA RISC:
El compilador juega un papel clave para un sistema RISC equilibrado.

Todas las operaciones complejas se trasladan al microprocesador por medio de conexiones fijas en el circuito integrado para agilizar las instrucciones básicas más importantes. De esta manera, el compilador asume la función de un mediador inteligente entre el programa de aplicación y el microprocesador. Es decir, se hace un gran esfuerzo para mantener al hardware tan simple como sea posible, aún a costa de hacer al compilador considerablemente más complicado. Esta estrategia se encuentra en clara contra posición con las máquinas CISC que tienen modos de direccionamiento muy complicados. En la práctica, la existencia en algunos modos de direccionamiento complicados en los microprocesadores CISC, hacen que tanto el compilador como el microprograma sean muy complicados.

No obstante, las máquinas CISC no tienen características complicadas como carga, almacenamiento y salto que consumen mucho tiempo, las cuales en efecto aumentan la complejidad del compilador.

Para suministrar datos al microprocesador de tal forma que siempre esté trabajando en forma eficiente, se aplican diferentes técnicas de optimización en distintos niveles jerárquicos del software.

Los diseñadores de RISC en la empresa MIP y en Hewlett Packard trabajan según la regla siguiente:

Una instrucción ingresa en forma fija en el circuito integrado del procesador (es decir, se alambra físicamente en el procesador) si se ha demostrado que la capacidad total del sistema se incrementa en por lo menos un 1%.

En cambio, los procesadores CISC, han sido desarrollados por equipos especializados de las empresas productoras de semiconductores y con frecuencia el desarrollo de compiladores se sigue por separado. Por consiguiente, los diseñadores de los compiladores se encuentran con una interfaz hacia el procesador ya definido y no pueden influir sobre la distribución óptima de las funciones entre el procesador y compilador.

Las empresas de software que desarrollan compiladores y programas de aplicación, tienden por razones de rentabilidad, a utilizar diferentes procesadores como usuarios de su software en lugar de realizar una optimización completa, y aprovechar así las respectivas características de cada uno. Lo cual también genera otros factores negativos de eficiencia. Esta limitación de las posibilidades de optimización del sistema, que viene dada a menudo por una obligada compatibilidad, se superó con los modernos desarrollos RISC.

CAPACIDAD DE PROCESAMIENTO DE LOS SISTEMAS DESDE EL PUNTO DE VISTA DEL USUARIO

Aparte de la base conceptual para el desarrollo de un sistema de computación de alta calidad, se requieren técnicas especiales para optimizar cada uno de los factores que determinan la capacidad de procesamiento, la cual, solo puede definirse con el programa de aplicación.

La información suministrada por un fabricante, sobre la velocidad en mips (millones de Instrucciones por segundo) que una arquitectura es capaz de realizar, carece de relevancia hasta que el usuario sepa cuantas instrucciones genera el respectivo compilador, al traducir su programa de aplicación y cuánto tiempo tarda la ejecución de estas instrucciones, y solo el análisis de diferentes pruebas y comparaciones de rendimiento ("benchmarks) da una idea aproximada, que el usuario puede aplicar para delimitar las arquítecturas adecuadas.

Dos diferentes puntos de vista acerca de capacidad de procesamiento del sistema.

Sistema reprogramable. Un usuario que necesite desarrollar un sistema reprogramable, no está interesado en obtener una alta capacidad de procesamiento. 
Sistema incluido o dedicado. En estos sistemas el principal objetivo es procesar en forma repetitiva una serie de aplicaciones o funciones determinadas, y es de suma importancia la mayor cantidad posible de pruebas y comparaciones de rendimiento ("benchmarks" ) diferentes. 

Así, estas pruebas y comparaciones sirven para determinar la capacidad de procesamiento de los sistemas, pero solo el análisis de varios resultados de diferentes programas da una idea aproximada de la capacidad de procesamiento real.

APLICACIONES DE LOS PROCESADORES RISC
Las arquitecturas CISC utilizadas desde hace 15 años han permitido desarrollar un gran número de productos de software. Ello representa una considerable inversión y asegura a estas familias de procesadores un mercado creciente. Sin embargo, simultáneamente aumentan las aplicaciones en las cuales la capacidad de procesamiento que se pueda obtener del sistema es más importante que la compatibilidad con el hardware y el software anteriores, lo cual no solo es válido en los subsistemas de alta capacidad en el campo de los sistemas llamados "embedded", en los que siempre dominaron las soluciones especiales de alta capacidad de procesamiento sino también para las estaciones de trabajo ("workstations"). Esta clase de equipos se han introducido poco a poco en oficinas, en la medicina y en bancos, debido a los cada vez mas voluminosos y complejos paquetes de software que con sus crecientes requerimientos de reproducción visual, que antes se encontraban solo en el campo técnico de la investigación y desarrollo.

En este tipo de equipos, el software de aplicación, se ejecuta bajo el sistema operativo UNIX, el cual es escrito en lenguaje C, por lo que las arquítecturas RISC actuales están adaptadas y optimizadas para este lenguaje de alto nivel. Por ello, todos los productores de estaciones de trabajo de renombre, han pasado en pocos años, de los procesadores CISC a los RISC, lo cual se refleja en el fuerte incremento anual del número de procesadores RISC, (los procesadores RISC de 32 bits han visto crecer su mercado hasta en un 150% anual). En pocos años, el RISC conquistará de 25 al 30% del mercado de los 32 bits, pese al aparentemente abrumador volumen de software basado en procesadores con el estándar CISC que se ha comercializado en todo el mundo.

La arquitectura MIPS-RISC ha encontrado, en el sector de estaciones de trabajo, la mayor aceptación. Los procesadores MIPS son fabricados y comercializados por cinco empresas productoras de semiconductores, entre las que figuran NEC y Siemens. Los procesadores de los cinco proveedores son compatibles en cuanto a las terminales, las funciones y los bits.

CONCLUSIONES:
Cada usuario debe decidirse a favor o en contra de determinada arquitectura de procesador en función de la aplicación concreta que quiera realizar. Esto vale tanto para la decisión por una determinada arquitectura CISC o RISC, como para determinar si RISC puede emplearse en forma rentable para una aplicación concreta. 
Nunca será decisiva únicamente la capacidad de procesamiento del microprocesador, y sí la capacidad real que puede alcanzar el sistema en su conjunto. 
Los costos, por su parte, también serán evaluados. 

Supongamos por ejemplo, que el precio de un procesador sea de $500.00 USD, éste será secundario para un usuario que diseña una estación de trabajo para venderla después a un precio de $100 000.00 USD. Su decisión se orientará exclusivamente por la potencialidad de este procesador.

RISC ofrece soluciones atractivas donde se requiere una elevada capacidad de procesamiento y se presente una orientación hacia los lenguajes de alto nivel.

En el campo industrial existe un gran número de aplicaciones que ni siquiera agotan las posibilidades de los controladores CISC de 8 bits actuales.

Si bién el campo de aplicaciones de las arquítecturas RISC de alta capacidad crece con fuerza, esto no equivale al fin de otras arquítecturas de procesadores y controladores acreditadas que también seguirán perfeccionándose, lo que si resulta dudoso es la creación de familias CISC completamente nuevas.

Adoptando técnicas típicas de los procesadores RISC en las nuevas versiones de procesadores CISC, se intenta encontrar nuevas rutas para el incremento de la capacidad de las familias CISC ya establecidas.

Entre tanto, los procesadores RISC han conquistado el sector de las estaciones de trabajo, dominado antes por los procesadores Motorola 68 000, y es muy probable que acosen la arquitectura Intel en el sector superior de las PC's.

Las decisiones en el mercado las toman los usuarios, y aquí, el software o la aplicación concreta juega un papel mucho más importante que las diferencias entre las estructuras que son inapreciables para el usuario final.

REDUCED INSTRUCTION SET COMPUTING

En arquitectura computacional, RISC (del inglés Reduced Instruction Set Computer, en español Computador con Conjunto de Instrucciones Reducidas) es un tipo de diseño de CPU generalmente utilizado en microprocesadores o microcontroladores con las siguientes características fundamentales:

Instrucciones de tamaño fijo y presentadas en un reducido número de formatos.
Sólo las instrucciones de carga y almacenamiento acceden a la memoria de datos.

Además estos procesadores suelen disponer de muchos registros de propósito general.

El objetivo de diseñar máquinas con esta arquitectura es posibilitar la segmentación y el paralelismo en la ejecución de instrucciones y reducir los accesos a memoria. Las máquinas RISC protagonizan la tendencia actual de construcción de microprocesadores. PowerPC, DEC Alpha, MIPS, ARM, SPARC son ejemplos de algunos de ellos.

RISC es una filosofía de diseño de CPU para computadora que está a favor de conjuntos de instrucciones pequeñas y simples que toman menor tiempo para ejecutarse. El tipo de procesador más comúnmente utilizado en equipos de escritorio, el x86, está basado en CISC en lugar de RISC, aunque las versiones más nuevas traducen instrucciones basadas en CISC x86 a instrucciones más simples basadas en RISC para uso interno antes de su ejecución.

La idea fue inspirada por el hecho de que muchas de las características que eran incluidas en los diseños tradicionales de CPU para aumentar la velocidad estaban siendo ignoradas por los programas que eran ejecutados en ellas. Además, la velocidad del procesador en relación con la memoria de la computadora que accedía era cada vez más alta. Esto conllevó la aparición de numerosas técnicas para reducir el procesamiento dentro del CPU, así como de reducir el número total de accesos a memoria.

Terminología más moderna se refiere a esos diseños como arquitecturas de carga-almacenamiento.

Filosofía de diseño antes de RISC:
Uno de los principios básicos de diseño para todos los procesadores es añadir velocidad al proveerles alguna memoria muy rápida para almacenar información temporalmente, estas memorias son conocidas como registros. Por ejemplo, cada CPU incluye una orden para sumar dos números. La operación básica de un CPU sería cargar esos dos números en los registros, sumarlos y almacenar el resultado en otro registro, finalmente, tomar el resultado del último registro y devolverlo a la memoria principal.

Sin embargo, los registros tienen el inconveniente de ser algo complejos para implementar. Cada uno está representado por transistores en el chip, en este aspecto la memoria principal tiende a ser mucho más simple y económica. Además, los registros le añaden complejidad al cableado, porque la unidad central de procesamiento necesita estar conectada a todos y cada uno de los registros para poder utilizarlos por igual.

Como resultado de esto, muchos diseños de CPU limitan el uso de registros de alguna u otra manera. Algunos incluyen pocos registros, aunque esto limita su velocidad. Otros dedican sus registros a tareas específicas para reducir la complejidad; por ejemplo, un registro podría ser cap registros, mientras que el resultado podría estar almacenado en cualquiera de ellos.

En el mundo de la microcomputación de los años setenta, éste era un aspecto más de las CPU, ya que los procesadores eran entonces demasiado lentos –de hecho había una tendencia a que el procesador fuera más lento que la memoria con la que se comunicaba-. En esos casos tenía sentido eliminar casi todos los registros, y entonces proveer al programador de una buena cantidad de maneras de tratar con la memoria para facilitar su trabajo.

Dado el ejemplo de la suma, la mayoría de los diseños de CPU se enfocaron a crear una orden que pudiera hacer todo el trabajo automáticamente: llamar los dos números que serían sumados, sumarlos, y luego almacenarlos fuera directamente. Otra versión podría leer los dos números de la memoria, pero almacenaría el resultado en un registro. Otra versión podría leer uno de la memoria y otro desde un registro y almacenarlo en la memoria nuevamente. Y así sucesivamente.

La meta en general en aquel tiempo era proveer cada posible modo de direccionamiento para cada instrucción, un principio conocido como ortogonalidad. Esto llevó a un CPU complejo, pero en teoría capaz de configurar cada posible orden individualmente, haciendo el diseño más rápido en lugar de que el programador utilizara órdenes simples.

La última representación de este tipo de diseño puede ser vista en dos equipos, el MOS 6502 por un lado, y el VAX en el otro. El chip 6502 de $25 USD efectivamente tenía solamente un registro, y con la configuración cuidadosa de la interfaz de memoria fue capaz de sobrepasar diseños corriendo a velocidades mayores (como el Zilog Z80 a 4MHz). El VAX era un minicomputador que en una instalación inicial requería 3 gabinetes de equipo para un solo CPU, y era notable por la sorprendente variedad de estilos de acceso a memoria que soportaba, y el hecho de que cada uno de éstos estaba disponible para cada instrucción.

Filosofía de diseño RISC:
A finales de los setenta, investigaciones en IBM (y otros proyectos similares en otros lugares), demostraron que la mayoría de esos modos de direccionamiento ortogonal eran ignorados por la mayoría de los programas. Esto fue un efecto colateral en el incremento en el uso de compiladores para generar los programas, algo opuesto a escribirlos en lenguaje ensamblador. Los compiladores tendían a ser demasiado tontos en términos de las características que usaban, un efecto colateral del intento por hacerlos pequeños. El mercado se estaba moviendo hacia un uso más generalizado de los compiladores, diluyendo aún más la utilidad de los modelos ortogonales.

Otro descubrimiento fue que debido a que esas operaciones eran escasamente utilizadas, de hecho tendían a ser más lentas que un número pequeño de operaciones haciendo lo mismo. Esta paradoja fue un efecto colateral del tiempo que se utilizaba diseñando los CPU, los diseñadores simplemente no tenían tiempo de optimizar cada instrucción posible, y en vez de esto sólo optimizaban las más utilizadas. Un famoso ejemplo de esto era la instrucción VAX INDEX, que se ejecutaba más lentamente que un bucle que implementara el mismo código.

Casi al mismo tiempo, las CPU comenzaron a correr a velocidades mayores que las de la memoria con la que se comunicaban. Aún a finales de los setenta, era aparente que esta disparidad continuaría incrementándose al menos durante la siguiente década, para entonces los CPU podrían ser cientos de veces más rápidos que la memoria. Esto significó que los avances para optimizar cualquier modo de direccionamiento serían completamente sobrepasados por las velocidades tan lentas en las que se llevaban a cabo.

Otra parte del diseño RISC llegó desde las medidas prácticas de los programas en el mundo real. Andrew Tanenbaum reunió muchos de éstos, demostrando así que la mayoría de los procesadores estaban sobredimensionados. Por ejemplo, él demostró que el 98 % de todas las constantes en un programa podían acomodarse en 13 bits, aun cuando cada diseño de CPU dedicaba algunos múltiplos de 8 bits para almacenarlos, típicamente 8, 16 o 32, una palabra entera. Tomando este hecho en cuenta sugiere que una máquina debería permitir que las constantes fuesen almacenadas en los bits sin utilizar de otras instrucciones, disminuyendo el número de accesos a memoria. En lugar de cargar números desde la memoria o los registros, éstos podrían estar ahí mismo para el momento en el que el CPU los necesitara, y por lo tanto el proceso sería mucho más rápido. Sin embargo, esto requería que la instrucción misma fuera muy pequeña, de otra manera no existiría suficiente espacio libre en los 32 bits para mantener constantes de un tamaño razonable.

Fue el pequeño número de modos y órdenes que dio lugar al término conjunto reducido de instrucciones. Ésta no es una definición correcta, ya que los diseños RISC cuentan con una vasta cantidad de conjuntos de instrucciones para ellos. La verdadera diferencia es la filosofía para hacer todo en registros y llamar y guardar los datos hacia ellos y en ellos mismos. Ésta es la razón por la que la forma más correcta de denominar este diseño es cargar-almacenar. Con el paso del tiempo las técnicas de diseño antiguas se dieron a conocer como Computadora con Conjunto de Instrucciones Complejo, CISC por sus siglas en inglés, aunque esto fue solamente para darles un nombre diferente por razones de comparación.

Por esto la filosofía RISC fue crear instrucciones pequeñas, implicando que había pocas, de ahí el nombre conjunto reducido de instrucciones. El código fue implementado como series de esas instrucciones simples, en vez de un sola instrucción compleja que diera el mismo resultado. Esto hizo posible tener más espacio dentro de la instrucción para transportar datos, resultando esto en la necesidad de menos registros en la memoria. Al mismo tiempo la interfaz con la memoria era considerablemente simple, permitiendo ser optimizada.

Sin embargo RISC también tenía sus desventajas. Debido a que una serie de instrucciones son necesarias para completar incluso las tareas más sencillas, el número total de instrucciones para la lectura de la memoria es más grande, y por lo tanto lleva más tiempo. Al mismo tiempo no estaba claro dónde habría o no una ganancia neta en el desempeño debido a esta limitación, y hubo una batalla casi continua en el mundo de la prensa y del diseño sobre los conceptos de RISC.

Multitarea:
Debido a lo redundante de las microinstrucciones, los sistemas operativos diseñados para estos microprocesadores, contemplaban la capacidad de subdividir un microprocesador en varios, reduciendo el número de instrucciones redundantes por cada instancia del mismo. Con una arquitectura del software optimizada, los entornos visuales desarrollados para estas plataformas, contemplaban la posibilidad de ejecutar varias tareas en un mismo ciclo de reloj. Así mismo, la paginación de la memoria RAM era dinámica y se asignaba una cantidad suficiente a cada instancia, existiendo una especie de 'simbiosis' entre la potencia del microprocesador y la RAM dedicada a cada instancia del mismo.

La multitarea dentro de la arquitectura CISC nunca ha sido real, tal como en los RISC sí lo es. En CISC, el microprocesador en todo su conjunto está diseñado en tantas instrucciones complejas y diferentes, que la subdivisión no es posible, al menos a nivel lógico. Por lo tanto, la multitarea es aparente y por órdenes de prioridad. Cada ciclo de reloj trata de atender a una tarea instanciada en la RAM y pendiente de ser atendida. Con una cola de atención por tarea FIFO para los datos generados por el procesador, y LIFO para las interrupciones de usuario, trataban de dar prioridad a las tareas que el usuario desencadenara en el sistema. La apariencia de multitarea en un CISC tradicional, viene de la mano de los modelos escalares de datos, convirtiendo el flujo en un vector con distintas etapas y creando la tecnología pipeline.

Los microprocesadores actuales, al ser híbridos, permiten cierta parte de multitarea real. La capa final al usuario es como un CISC tradicional, mientras que las tareas que el usuario deja pendientes, dependiendo del tiempo de inactividad, el sistema traducirá las instrucciones (el software ha de ser compatible con esto) CISC a RISC, pasando la ejecución de la tarea a bajo nivel, en donde los recursos se procesan con la filosofía RISC. Dado que el usuario solo atiende una tarea por su capacidad de atención, el resto de tareas que deja pendientes y que no son compatibles con el modelo de traducción CISC/RISC, pasan a ser atendidas por el tradicional pipeline, o si son tareas de bajo nivel, tal como desfragmentaciones de disco, chequeo de la integridad de la información, formateos, tareas gráficas o tareas de cálculo matemático intenso.

En vez de tratar de subdividir a un solo microprocesador, se incorporó un segundo microprocesador gemelo, idéntico al primero. El inconveniente es que la RAM debía de ser tratada a nivel hardware y los módulos diseñados para plataformas monoprocesador no eran compatibles o con la misma eficiencia, que para las plataformas multiprocesador. Otro inconveniente, era la fragmentación del BYTE de palabra. En un RISC tradicional, se ocupan los BYTES de la siguiente forma: Si la palabra es de 32 BITS (4 BYTES de palabra de 8 BITS cada una, o dos de 16 o una de 32), dependiendo de la profundidad del dato portado, dentro del mismo BYTE, se incluian partes de otras instrucciones y datos. Ahora, al ser dos microprocesadores distintos, ambos usaban registros independientes, con accesos a la memoria propios (en estas plataformas, la relación de RAM por procesador es de 1/1). En sus orígenes, las soluciones se parecían a las típícas ñapas de albanil, cada placa base incorporaba una solución solamente homologada por la chip set usada y los drivers que la acompañaban. Si bien la fragmentación siempre ha sido como ese mosquito que zumba en el oído, pero que por pereza permitimos que nos pique, llegó un momento que era imposible evadir el zumbido. Esta época llegó con las plataformas de 64 BITS.

Historia:
Mientras la filosofía de diseño RISC se estaba formando, nuevas ideas comenzaban a surgir con un único fin: incrementar drásticamente el rendimiento de la CPU.

Al principio de la década de los ochenta se pensaba que los diseños existentes estaban alcanzando sus límites teóricos. Las mejoras de la velocidad en el futuro serían hechas con base en procesos mejorados, esto es, pequeñas características en el chip. La complejidad del chip podría continuar como hasta entonces, pero un tamaño más pequeño podría resultar en un mejor rendimiento del mismo al operar a más altas velocidades de reloj. Se puso una gran cantidad de esfuerzo en diseñar chips para computación paralela, con vínculos de comunicación interconstruidos. En vez de hacer los chips más rápidos, una gran cantidad de chips serían utilizados, dividiendo la problemática entre éstos. Sin embargo, la historia mostró que estos miedos no se convirtieron en realidad, y hubo un número de ideas que mejoraron drásticamente el rendimiento al final de la década de los ochenta.

Una idea era la de incluir un canal por el cual se pudieran dividir las instrucciones en pasos y trabajar en cada paso muchas instrucciones diferentes al mismo tiempo. Un procesador normal podría leer una instrucción, decodificarla, enviar a la memoria la instrucción de origen, realizar la operación y luego enviar los resultados. La clave de la canalización es que el procesador pueda comenzar a leer la siguiente instrucción tan pronto como termine la última instrucción, significando esto que ahora dos instrucciones se están trabajando (una está siendo leída, la otra está comenzando a ser decodificada), y en el siguiente ciclo habrá tres instrucciones. Mientras que una sola instrucción no se completaría más rápido, la siguiente instrucción sería completada enseguida. La ilusión era la de un sistema mucho más rápido. Esta técnica se conoce hoy en día como Segmentación de cauce.

Otra solución más era utilizar varios elementos de procesamiento dentro del procesador y ejecutarlos en paralelo. En vez de trabajar en una instrucción para sumar dos números, esos procesadores superescalares podrían ver la siguiente instrucción en el canal y tratar de ejecutarla al mismo tiempo en una unidad idéntica. Esto no era muy fácil de hacer, sin embargo, ya que algunas instrucciones dependían del resultado de otras instrucciones.

Ambas técnicas se basaban en incrementar la velocidad al añadir complejidad al diseño básico del CPU, todo lo opuesto a las instrucciones que se ejecutaban en el mismo. Siendo el espacio en el chip una cantidad finita, para poder incluir todas esas características algo más tendría que ser eliminado para hacer hueco. RISC se encargó de tomar ventaja de esas técnicas, esto debido a que su lógica para el CPU era considerablemente más simple que la de los diseños CISC. Aun con esto, los primeros diseños de RISC ofrecían una mejora de rendimiento muy pequeña, pero fueron capaces de añadir nuevas características y para finales de los ochenta habían dejado totalmente atrás a sus contrapartes CISC. Con el tiempo esto pudo ser dirigido como una mejora de proceso al punto en el que todo esto pudo ser añadido a los diseños CISC y aun así caber en un solo chip, pero esto tomó prácticamente una década entre finales de los ochenta y principios de los noventa.

Características:
En pocas palabras esto significa que para cualquier nivel de desempeño dado, un chip RISC típicamente tendrá menos transistores dedicados a la lógica principal. Esto permite a los diseñadores una flexibilidad considerable; así pueden, por ejemplo:
  • Incrementar el tamaño del conjunto de registros.
  • Mayor velocidad en la ejecución de instrucciones.
  • Implementar medidas para aumentar el paralelismo interno.
  • Añadir cachés enormes.
  • Añadir otras funcionalidades, como E/S y relojes para minicontroladores.
  • Construir los chips en líneas de producción antiguas que de otra manera no serían utilizables.
  • No ampliar las funcionalidades, y por lo tanto ofrecer el chip para aplicaciones de bajo consumo de energía o de tamaño limitado.
Las características que generalmente son encontradas en los diseños RISC son:
  • Codificación uniforme de instrucciones (ejemplo: el código de operación se encuentra siempre en la misma posición en cada instrucción, la cual es siempre una palabra), lo que permite una decodificación más rápida.
  • Un conjunto de registros homogéneo, permitiendo que cualquier registro sea utilizado en cualquier contexto y así simplificar el diseño del compilador (aunque existen muchas formas de separar los ficheros de registro de entero y coma flotante).
  • Modos de direccionamiento simple con modos más complejos reemplazados por secuencias de instrucciones aritméticas simples.
  • Los tipos de datos soportados en el hardware (por ejemplo, algunas máquinas CISC tiene instrucciones para tratar con tipos byte, cadena) no se encuentran en una máquina RISC.
Los diseños RISC también prefieren utilizar como característica un modelo de memoria Harvard, donde los conjuntos de instrucciones y los conjuntos de datos están conceptualmente separados; esto significa que el modificar las direcciones donde el código se encuentra pudiera no tener efecto alguno en las instrucciones ejecutadas por el procesador (porque la CPU tiene separada la instrucción y el caché de datos, al menos mientras una instrucción especial de sincronización es utilizada). Por otra parte, esto permite que ambos cachés sean accedidos separadamente, lo que puede en algunas ocasiones mejorar el rendimiento.

Muchos de esos diseños RISC anteriores también compartían una característica no muy amable, el slot de salto retardado (Delay Slot). Un slot de salto retardado es un espacio de instrucción siguiendo inmediatamente un salto. La instrucción en este espacio es ejecutada independientemente de si el salto se produce o no (en otras palabra el salto es retardado). Esta instrucción mantiene la ALU de la CPU ocupada por el tiempo extra normalmente necesario para ejecutar una brecha. Para utilizarlo, recae en el compilador la responsabilidad de reordenar las instrucciones de manera que el código sea coherente para ejecutar con esta característica. En nuestros días el slot de salto retardado se considera un desafortunado efecto colateral de la estrategia particular por implementar algunos diseños RISC. Es por esto que los diseños modernos de RISC, tales como ARM, PowerPC, y versiones más recientes de SPARC y de MIPS, generalmente eliminan esta característica.

Primeros diseños RISC:
El primer sistema que pudiera ser considerado en nuestros días como RISC no lo era así en aquellos días; era la supercomputadora CDC 6600, diseñada en 1964 por Seymour Cray.

Cray la diseñó como un CPU para cálculos a gran escala (con 74 códigos, comparada con un 8086 400, además de 12 computadores simples para manejar los procesos de E/S (la mayor parte del sistema operativo se encontraba en uno de éstos).

El CDC 6600 tenía una arquitectura de carga/almacenamiento con tan solo dos modos de direccionamiento. Había once unidades de canalización funcional para la aritmética y la lógica, además de cinco unidades de carga y dos unidades de almacenamiento (la memoria tenía múltiples bancos para que todas las unidades de carga/almacenamiento pudiesen operar al mismo tiempo). El nivel promedio de operación por ciclo/instrucción era 10 veces más rápido que el tiempo de acceso a memoria.

Los diseños RISC que más se dieron a conocer sin embargo, fueron aquellos donde los resultados de los programas de investigación de las universidades eran ejecutados con fondos del programa DARPA VLSI. El programa VLSI prácticamente desconocido hoy en día, llevo a un gran número de avances en el diseño de chips, la fabricación y aún en las gráficas asistidas por computadora.

Una de las primeras máquinas de carga/almacenamiento fue la minicomputadora Data General Nova, diseñado en 1968 por Edson de Castro. Había un conjunto de instrucciones RISC casi puro, muy similar a la de los procesadores ARM de hoy, sin embargo no ha sido citado como haber influido en los diseñadores del ARM, aunque estas máquinas estaban en uso en la Universidad de Cambridge ComputerLaboratory en la década de 1980.

El proyecto RISC de la Universidad de Berkeley comenzó en 1980 bajo la dirección de David A. Patterson, basándose en la obtención de rendimiento a través del uso de la canalización y un agresivo uso de los registros conocido como ventanas de registros. En una CPU normal se tienen un pequeño número de registros, un programa puede usar cualquier registro en cualquier momento. En una CPU con ventanas de registros, existen un gran número de registros (138 en el RISC-I), pero los programas solo pueden utilizar un pequeño número de estos (32 en el RISC-I) en cualquier momento.

Un programa que se limita asimismo a 32 registros por procedimiento puede hacer llamadas a procedimientos muy rápidas: la llamada, y el regreso, simplemente mueven la ventana de 32 registros actual para limpiar suficiente espacio de trabajo para la subrutina, y el regreso restablece esos valores.

El proyecto RISC entregó el procesador RISC-I en 1982. Consistiendo de solo 44.420 transistores (comparado con promedios de aproximadamente 100.000 en un diseño CISC de esa época) RISC-I solo tenía 32 instrucciones, y aun así sobrepasaba el desempeño de cualquier otro diseño de chip simple. Se continuó con esta tendencia y RISC-II en 1983 tenía 40.760 transistores y 39 instrucciones, con los cuales ejecutaba 3 veces más rápido que el RISC-I.

Casi al mismo tiempo, John Hennessy comenzó un proyecto similar llamado MIPS en la Universidad de Stanford en 1981. MIPS se centraba casi completamente en la segmentación, asegurándose de que ejecutara tan lleno como fuera posible. Aunque la segmentación ya había sido utilizada en otros diseños, varias características del chip MIPS hacían su segmentación mucho más rápida. Lo más importante, y quizá molesto de estas características era el requisito de que todas las instrucciones fueran capaces de completarse en un solo ciclo. Este requisito permitía al canal ser ejecutado a velocidades más altas (no había necesidad de retardos inducidos) y es la responsable de la mayoría de la velocidad del procesador. Sin embargo, también tenía un efecto colateral negativo al eliminar muchas de las instrucciones potencialmente utilizables, como una multiplicación o una división.

El primer intento por hacer una CPU basada en el concepto RISC fue hecho en IBM el cual comenzó en 1975, precediendo a los dos proyectos anteriores. Nombrado como proyecto RAN, el trabajo llevó a la creación de la familia de procesadores IBM 801, la cual fue utilizada ampliamente en los equipos de IBM. El 801 fue producido eventualmente en forma de un chip como ROMP en 1981, que es la abreviatura deResearch Office Products Division Mini Processor. Como implica el nombre, esta CPU fue diseñada para tareas pequeñas, y cuando IBM lanzó el diseño basado en el IBM RT-PC en 1986, el rendimiento no era aceptable. A pesar de esto, el 801 inspiró varios proyectos de investigación, incluyendo algunos nuevos dentro de IBM que eventualmente llevarían a su sistema IBM POWER.

En los primeros años, todos los esfuerzos de RISC eran bien conocidos, pero muy confinados a los laboratorios de las universidades que los habían creado. El esfuerzo de Berkeley se dio a conocer tanto que eventualmente se convirtió en el nombre para el proyecto completo. Muchos en la industria de la computación criticaban el que los beneficios del rendimiento no se podían traducir en resultados en el mundo real debido a la eficiencia de la memoria de múltiples instrucciones, y ésa fue la razón por la que nadie los estaba utilizando. Pero a comienzos de 1986, todos los proyectos de investigación RISC comenzaron a entregar productos. De hecho, casi todos los procesadores RISC modernos son copias directas del diseño RISC-II.

RISC moderno:
La investigación de Berkeley no fue comercializada directamente, pero el diseño RISC-II fue utilizado por Sun Microsystems para desarrollar el SPARC, por Pyramid Technology para desarrollar sus máquinas de multiprocesador de rango medio, y por casi todas las compañías unos años más tarde. Fue el uso de RISC por el chip de SUN en las nuevas máquinas el que demostró que los beneficios de RISC eran reales, y sus máquinas rápidamente desplazaron a la competencia y esencialmente se apoderaron de todo el mercado de estaciones de trabajo.

John Hennessy dejó Stanford para comercializar el diseño MIPS, comenzando una compañía conocida como MIPS Computer Systems Inc. Su primer diseño fue el chip de segunda generación MIPS-II conocido como el R2000. Los diseños MIPS se convirtieron en uno de los chips más utilizados cuando fueron incluidos en las consolas de juego Nintendo 64 y PlayStation. Hoy son uno de los procesadores integrados más comúnmente utilizados en aplicaciones de alto nivel por Silicon Graphics.

IBM aprendió del fallo del RT-PC y tuvo que continuar con el diseño del RS/6000 basado en su entonces nueva arquitectura IBM POWER. Entonces movieron sus computadoras centrales S/370 a los chips basados en IBM POWER, y se sorprendieron al ver que aun el conjunto de instrucciones muy complejas (que era parte del S/360 desde 1964) corría considerablemente más rápido. El resultado fue la nueva serieSystem/390 que aún hoy en día es comercializada como zSeries. El diseño IBM POWER también se ha encontrado moviéndose hacia abajo en escala para producir el diseño PowerPC, el cual eliminó muchas de las instrucciones solo IBM y creó una implementación de chip único. El PowerPC fue utilizado en todas las computadoras Apple Macintosh hasta 2006, y está comenzando a ser utilizado en aplicaciones automotrices (algunos vehículos tienen más de 10 dentro de ellos), las consolas de videojuegos de última generación (PlayStation 3, Wii y Xbox 360) están basadas en PowerPC.

Casi todos los demás proveedores se unieron rápidamente. De los esfuerzos similares en el Reino Unido resultó el INMOS Trasputer, el Acorn Archimedes y la línea Advanced RISC Machine, la cual tiene un gran éxito hoy en día. Las compañías existentes con diseños CISC también se unieron a la revolución. Intel lanzó el i860 y el i960 a finales de los ochenta, aunque no fueron muy exitosos. Motorola construyó un nuevo diseño pero no le vio demasiado uso y eventualmente lo abandonó, uniéndose a IBM para producir el PowerPC. AMD lanzó su familia 29000 la cual se convirtió en el diseño RISC más popular a principios de los noventa.

Hoy en día los microcontroladores y CPU RISC representan a la vasta mayoría de todos los CPU utilizados. La técnica de diseño RISC ofrece poder incluso en medidas pequeñas, y esto ha venido a dominar completamente el mercado de CPU integrados de bajo consumo de energía. Los CPU integrados son por mucho los procesadores más comunes en el mercado: considera que una familia completa con una o dos computadoras personales puede poseer varias docenas de dispositivos con procesadores integrados. RISC se ha apoderó completamente del mercado de estación de trabajo. Después del lanzamiento de la SUN SPARCstation los otros proveedores se apuraron a competir con sus propias soluciones basadas en RISC. Aunque hacia 2006-2010 las estaciones de trabajo pasaron a la arquitectura x86-64 de Intel y AMD. Incluso el mundo de las computadoras centrales está ahora basado completamente en RISC.

Esto es sorprendente en vista del dominio del Intel x86 y x86 64 en el mercado de las computadoras personales de escritorio (ahora también en el de estaciones de trabajo), ordenadores portátiles y en servidores de la gama baja. Aunque RISC fue capaz de avanzar en velocidad muy rápida y económicamente.

Los diseños RISC han llevado a un gran número de plataformas y arquitecturas al éxito, algunas de las más grandes:
La línea MIPS Technologies Inc., que se encontraba en la mayoría de las computadoras de Silicon Graphics hasta 2006, y estuvo en las consolas ya descatalogadas Nintendo 64, PlayStation y PlayStation 2. Actualmente se utiliza en la PlayStation Portable y algunos routers.
La serie IBM POWER, utilizado principalmente por IBM en Servidores y superordenadores.
La versión PowerPC de Motorola e IBM (una versión de la serie IBM POWER) utilizada en los ordenadores AmigaOne, Apple Macintosh como el iMac, eMac, Power Mac y posteriores (hasta 2006). Actualmente se utiliza en muchos sistemas empotrados en automóviles, routers, etc, así como en muchas consolas de videojuegos, como la Playstation 3, Xbox 360 y Wii.

El procesador SPARC y UltraSPARC de Sun Microsystems y Fujitsu, que se encuentra en sus últimos modelos de servidores (y hasta 2008 también en estaciones de trabajo).
El PA-RISC y el HP/PA de Hewlett-Packard, ya descatalogados.
El DEC Alpha en servidores HP AlphaServer y estaciones de trabajo AlphaStation, ya descatalogados.
El ARM – El paso de hardware de instrucciones x86 en operaciones RISC llega a ser significativo en el área y la energía para dispositivos móviles e integrados. Por lo tanto, los procesadores ARM dominan enPALM, Nintendo DS, Game Boy Advance y en múltiples PDAs, Apple iPods, Apple iPhone, iPod Touch (Samsung ARM1176JZF, ARM Cortex-A8, Apple A4), Apple iPad (Apple A4 ARM -based SoC), videoconsolas como Nintendo DS (ARM7TDMI, ARM946E-S), Nintendo Game Boy Advance (ARM7TDMI).

El Atmel AVR usado en gran variedad de productos, desde mandos de la Xbox a los coches de la empresa BMW.
La plataforma SuperH de Hitachi, originalmente usada para las consolas Sega Super 32X, Saturn y Dreamcast, ahora forman parte de el corazón de muchos equipos electrónicos para el consumo.SuperH es la plataforma base del grupo Mitsubishi - Hitachi. Estos dos grupos, unidos en 2002, dejaron aparte la propia arquitectura RISC de Mitsubishi, el M32R.
Los procesadores XAP usados en muchos chips wireless de poco consumo (Bluetooth, wifi) de CSR.

Uso Actualmente

ARQUITECTURA RISC Y CISC

Una de las primeras decisiones a la hora de diseñar un microprocesador es decidir cual será su juego de instrucciones.
La decisión por dos razones; primero, el juego de instrucciones decide el diseño físico del conjunto; segundo, cualquier operación que deba ejecutarse en el microprocesador deberá poder ser descrita en términos de un lenguaje de estas instrucciones.

Frente a esta cuestión caben dos filosofías de diseño; máquinas denominadas CISC y máquinas denominadas RISC.


Cuando hablamos de microprocesadores CISC, computadoras con un conjunto de instrucciones complejo, (del inglés complex instruction set computer), y procesadores RISC, computadoras con un conjunto de instrucciones reducido, (del inglés reduced instruction set computer), se piensa que los atributos complejo y reducido describen las diferencias entre los dos modelos de arquitectura para microprocesadores.
Esto es cierto solo de forma superficial, pues se requiere de muchas otras características esenciales para definir los RISC y los CISC.

Hasta hace solo algunos años, la división era tajante: RISC se utilizaba para entornos de red, mientras que CISC se aplicaba en ordenadores domésticos. Pero en la actualidad se alzan voces que afirman que CISC está agotando sus posibilidades, mientras otras defienden fervientemente que CISC ya ha alcanzado a RISC, adoptando algunas de sus principales características.

Arquitectura RISC: 
En la arquitectura computacional, RISC (del inglés reduced instruction set computer) es un tipo de microprocesador con las siguientes características fundamentales:

  • Instrucciones de tamaño fijo y presentadas en un reducido número de formatos.
  • Sólo las instrucciones de carga y almacenamiento acceden a la memoria de datos.
El objetivo de diseñar máquinas con esta arquitectura es posibilitar la segmentación y el paralelismo en la ejecución de instrucciones y reducir los accesos a memoria.
Las máquinas RISC protagonizan la tendencia actual de construcción de microprocesadores. PowerPC, DEC Alpha, MIPS, ARM, SPARC... son ejemplos de algunos de ellos.
RISC es una filosofía de diseño de CPU para computadora que está a favor de conjuntos de instrucciones pequeñas y simples que toman menor tiempo para ejecutarse.

El tipo de procesador más comúnmente utilizado en equipos de escritorio, el x86, está basado en CISC en lugar de RISC, aunque las versiones más nuevas traducen instrucciones basadas en CISC x86 a instrucciones más simples basadas en RISC para uso interno antes de su ejecución.

La idea fue inspirada por el hecho de que muchas de las características que eran incluidas en los diseños tradicionales de CPU para aumentar la velocidad estaban siendo ignoradas por los programas que eran ejecutados en ellas. Además, la velocidad del procesador en relación con la memoria de la computadora que accedía era cada vez más alta. Esto con llevó la aparición de numerosas técnicas para reducir el procesamiento dentro del CPU, así como de reducir el número total de accesos a memoria.

Características:
En pocas palabras esto significa que para cualquier nivel de desempeño dado, un chip RISC típicamente tendrá menos transistores dedicados a la lógica principal. Esto permite a los diseñadores una flexibilidad considerable; así pueden, por ejemplo:
  • Incrementar el tamaño del conjunto de registros.
  • Mayor velocidad en la ejecución de instrucciones.
  • Implementar medidas para aumentar el paralelismo interno.
  • Añadir cachés enormes.
  • Añadir otras funcionalidades, como E/S y relojes para minicontroladores.
  • Construir los chips en líneas de producción antiguas que de otra manera no serían utilizables.
  • No ampliar las funcionalidades, y por lo tanto ofrecer el chip para aplicaciones de bajo consumo de energía o de tamaño limitado.
Las características que generalmente son encontradas en los diseños RISC son:
  • Codificación uniforme de instrucciones, lo que permite una de codificación más rápida.
  • Un conjunto de registros homogéneo, permitiendo que cualquier registro sea utilizado en cualquier contexto y así simplificar el diseño del compilador.
  • Modos de direccionamiento simple con modos más complejos reemplazados por secuencias de instrucciones aritméticas simples.
  • Los tipos de datos soportados en el hardware no se encuentran en una máquina RISC.
  • Los diseños RISC también prefieren utilizar como característica un modelo de memoria Harvard, donde los conjuntos de instrucciones y los conjuntos de datos están conceptualmente separados.
RISC Moderno:
Los diseños RISC han llevado a un gran número de plataformas y arquitecturas al éxito, algunas de las más grandes:

La línea MIPS Technologies Inc., que se encontraba en la mayoría de las computadoras de Silicon Graphics hasta 2006, y estuvo en las consolas ya descatalogadas Nintendo 64, PlayStation y PlayStation 2. Actualmente se utiliza en la PlayStation Portable y algunos routers.

La serie IBM POWER, utilizado principalmente por IBM en Servidores y superordenadores.

La versión PowerPC de Motorola e IBM (una versión de la serie IBM POWER) utilizada en los ordenadores AmigaOne, Apple Macintosh como el iMac, eMac, Power Mac y posteriores (hasta 2006). Actualmente se utiliza en muchos sistemas empotrados en automóviles, routers, etc, así como en muchas consolas de videojuegos, como la Playstation 3, Xbox 360 y Wii.

El procesador SPARC y UltraSPARC de Sun Microsystems y Fujitsu, que se encuentra en sus últimos modelos de servidores (y hasta 2008 también en estaciones de trabajo).

El PA-RISC y el HP/PA de Hewlett-Packard, ya descatalogados.

El DEC Alpha en servidores HP AlphaServer y estaciones de trabajo AlphaStation, ya descatalogados.

El ARM – El paso de hardware de instrucciones x86 en operaciones RISC llega a ser significativo en el área y la energía para dispositivos móviles e integrados. Por lo tanto, los procesadores ARM dominan en PALM, Nintendo DS, Game Boy Advance y en múltiples PDAs, Apple iPods, Apple iPhone, iPod Touch (Samsung ARM1176JZF, ARM Cortex-A8, Apple A4), Apple iPad (Apple A4 ARM -based SoC), videoconsolas como Nintendo DS (ARM7TDMI, ARM946E-S), Nintendo Game Boy Advance (ARM7TDMI).

El Atmel AVR usado en gran variedad de productos, desde mandos de la Xbox a los coches de la empresa BMW.

La plataforma SuperH de Hitachi, originalmente usada para las consolas Sega Super 32X, Saturn y Dreamcast, ahora forman parte de el corazon de muchos equipos electrónicos para el consumo.SuperH es la plataforma base de el grupo Mitsubishi - Hitachi. Estos dos grupos, unidos en 2002, dejaron aparte la propia arquitectura RISC de Mitsubishi, el M32R.

Los procesadores XAP usados en muchos chips wireless de poco consumo (Bluetooth, wifi) de CSR.

Entre las ventajas de RISC tenemos las siguientes:

La CPU trabaja mas rápido al utilizar menos ciclos de reloj para ejecutar instrucciones.
Utiliza un sistema de direcciones no destructivas en RAM. Eso significa que a diferencia de CISC, RISC conserva después de realizar sus operaciones en memoria los dos operandos y su resultado, reduciendo la ejecución de nuevas operaciones.
Cada instrucción puede ser ejecutada en un solo ciclo del CPU

Arquitectura CISC:
En la arquitectura computacional, CISC (complex instruction set computer) es un modelo de arquitectura de computadora.
Los microprocesadores CISC tienen un conjunto de instrucciones que se caracteriza por ser muy amplio y permitir operaciones complejas entre operandos situados en la memoria o en los registros internos, en contraposición a la arquitectura RISC.

Este tipo de arquitectura dificulta el paralelismo entre instrucciones, por lo que, en la actualidad, la mayoría de los sistemas CISC de alto rendimiento implementan un sistema que convierte dichas instrucciones complejas en varias instrucciones simples del tipo RISC, llamadas generalmente microinstrucciones.

Los CISC pertenecen a la primera corriente de construcción de procesadores, antes del desarrollo de los RISC. Ejemplos de ellos son: Motorola 68000, Zilog Z80 y toda la familia Intel x86 usada en la mayoría de las computadoras personales actuales.

Para realizar una sola instrucción un chip CISC requiere de cuatro a diez ciclos de reloj.

Entre las ventajas de CISC destacan las siguientes:
  • Reduce la dificultad de crear compiladores.
  • Permite reducir el costo total del sistema.
  • Reduce los costos de creación de sftware.
  • Mejora la compactación de código.
  • Facilita la depuración de errores.
Ejemplo de microprocesadores basados en la tecnología CISC:

Intel 8086, 8088, 80286, 80386, 80486.
Motorola 68000, 68010, 68020, 68030, 6840.

Ejemplo de microprocesadores basados en la tecnología CISC:

MIPS, Millions Instruction Per Second.
PA-RISC, Hewlett Packard.
SPARC, Scalable Processor Architecture, Sun Microsystems.
POWER PC, Apple, Motorola e IBM.

Conclusión:
Hoy en día, los programas cada vez más grandes y complejos demandan mayor velocidad en el procesamiento de información, lo que implica la búsqueda de microprocesadores más rápidos y eficientes.

lunes, 3 de agosto de 2015

Descubren un fallo que 'mata' a los Android

pixabay.com / RT

La vulnerabilidad de los dispositivos Android, que puede dejar al teléfono aparentemente 'muerto' e inservible para hacer llamadas, ha sido descubierto por la compañía global de seguridad del software Trend Micro.

Este defecto estaría presente desde el Android 4.3 (Jelly Bean) hasta la versión actual, Android 5.1.1 (Lollipop), según informa Trend Micro. Estas versiones suponen más de la mitad de los dispositivos Android hoy en día. El equipo de ingeniería de Android todavía no ha publicado ningúna solución para determinar la vulnerabilidad.

El fallo podría ser aprovechado de dos maneras: a través de una aplicación maliciosa instalada en el dispositivo, o a través de un sitio web especialmente diseñado. El primer método puede tener efectos a largo plazo para el dispositivo, ya que una aplicación con un archivo MKV incorporado causará el bloqeo del sistema operativo cada vez que se enciende el dispositivo.

Ambos fallos se activan cuando Android transfiere archivos de medios.

miércoles, 29 de julio de 2015

Intel y Micron presentan su tecnología de memoria más rápida y densa que la convencional


Actualmente vivimos en una época caracterizada por la cantidad de dispositivos conectados y la generación de gran cantidad de datos, a los que hay que almacenar y acceder rápidamente a los mismos para permitir su procesamiento. En este sentido, las compañías Intel y Micron han presentado hoy, mediante una keynote en directo, su nueva tecnología llamada 3D XPoint, creada desde cero, la cual es fruto de más de una década de investigación y desarrollo.

Con esta nueva tecnología, ya en producción, ambas compañías quieren hacer frente a los nuevos desafíos tecnológicos que se presentan en la era actual, señalando acerca de la misma que es una clase de memoria no volátil con latencias mucho más bajas, siendo hasta 1.000 veces más rápidas que las memorias NAND Flash, que tenemos actualmente disponibles en pendrives y en las unidades de almacenamiento de estado sólido (SSD). La arquitectura de la nueva tecnología prescinde totalmente de transistores, basándose en el cambio de propiedades de los compuestos únicos de los materiales, los cuales van variando sus resistencia, formando un patrón de tablero tridimensional complejo, ofreciendo hasta diez veces de densidad respecto a la memoria convencional.

Resalta además que se trata de una tecnología de alto rendimiento, alta resistencia y de alta capacidad de almacenamiento, todo ello a un precio asequible. En este sentido, una misma unidad de esta memoria permite almacenar unos 128 Gb de datos.

Respecto a las aplicaciones de la nueva tecnología, pueden ir desde el aprendizaje automático para el seguimiento en tiempo real de las enfermedades hasta el ofrecimiento de capacidades de inmersión en juegos de ordenador bajo resolución a 8K (UHDV), según indica la compañía en un comunicado.